



Edition 2.0 2025-05 COMMENTED VERSION

# INTERNATIONAL STANDARD

Railway applications – Communication, signalling and processing systems – Safety related electronic systems for signalling

# CONTENTS

| FC | DREWO | RD                                                        | 6  |
|----|-------|-----------------------------------------------------------|----|
| IN | TRODU | ICTION                                                    | 9  |
| 1  | Scop  | е                                                         | 10 |
| 2  | Norm  | native references                                         | 11 |
| 3  | Term  | s, definitions and abbreviated terms                      | 12 |
|    | 3.1   | Terms and definitions                                     | 12 |
|    | 3.2   | Abbreviated terms                                         | 22 |
| 4  | Over  | all framework of this document                            | 23 |
| 5  | Requ  | irements for developing safety-related electronic systems | 25 |
|    | 5.1   | General                                                   | 25 |
|    | 5.2   | The quality management process                            | 25 |
|    | 5.3   | The safety management process                             | 27 |
|    | 5.3.1 | General                                                   | 27 |
|    | 5.3.2 | Guideline for structuring documentation                   | 27 |
|    | 5.3.3 | Safety life cycle                                         | 28 |
|    | 5.3.4 | Safety organization                                       | 28 |
|    | 5.3.5 | Safety plan                                               | 30 |
|    | 5.3.6 | Hazard log                                                | 31 |
|    | 5.3.7 | Safety requirements specification                         | 31 |
|    | 5.3.8 | System design for safety                                  | 31 |
|    | 5.3.9 | Safety operation and maintenance plan                     | 32 |
|    | 5.3.1 | 0 Safety verification                                     | 32 |
|    | 5.3.1 | 1 Safety validation                                       | 33 |
|    | 5.3.1 | 2 Safety qualification tests                              | 34 |
|    | 5.3.1 | 3 Management of safety-related application conditions     | 35 |
|    | 5.3.1 | 4 Safety justification                                    | 36 |
|    | 5.3.1 | 5 Independent safety assessment                           | 37 |
| 6  | Requ  | irements for elements following different life cycles     | 37 |
|    | 6.1   | General                                                   | 37 |
|    | 6.2   | Use of pre-existing items                                 | 38 |
|    | 6.2.1 | General                                                   | 38 |
|    | 6.2.2 | Requirements for use of complete pre-existing systems     | 39 |
|    | 6.2.3 | Requirements for use of pre-existing equipment            | 39 |
|    | 6.3   | Safety-related tools for electronic systems               | 40 |
|    | 6.4   | Physical security and cybersecurity                       | 41 |
| 7  | The   | safety case: structure and content                        | 42 |
|    | 7.1   | The safety case structure                                 | 42 |
|    | 7.2   | The technical safety report                               | 44 |
|    | 7.3   | Generic and specific safety cases                         | 53 |
|    | 7.4   | Provisions for the specific application safety case       | 53 |
|    | 7.5   | Dependencies between safety cases                         | 54 |
| 8  | Syste | em safety acceptance and subsequent phases                | 55 |
|    | 8.1   | System safety acceptance process                          | 55 |
|    | 8.2   | Operation, maintenance and performance monitoring         | 59 |
|    | 8.3   | Modification and retrofit                                 | 59 |
|    | 8.4   | Decommissioning and disposal                              | 59 |

| Annex A ( | normative) Safety integrity levels                                                                               | 60    |
|-----------|------------------------------------------------------------------------------------------------------------------|-------|
| A.1       | General                                                                                                          | 60    |
| A.2       | Safety requirements                                                                                              | 60    |
| A.3       | Safety integrity                                                                                                 | 61    |
| A.4       | Determination of safety integrity requirements                                                                   | 61    |
| A.4.1     | General                                                                                                          | 61    |
| A.4.2     | Risk assessment                                                                                                  | 63    |
| A.4.3     |                                                                                                                  |       |
| A.4.4     | Identification and treatment of new hazards arising from design                                                  | 71    |
| A.5       | Allocation of SILs                                                                                               | 72    |
| A.5.1     |                                                                                                                  |       |
| A.5.2     | Relationship between SIL and associated TFFR                                                                     | 73    |
| Annex B ( | normative) Management of faults for safety-related functions                                                     | 75    |
| B.1       | General                                                                                                          | 75    |
| B.2       | General concepts                                                                                                 | 75    |
| B.2.1     | Detection and negation times                                                                                     | 75    |
| B.2.2     | Composition of two independent items                                                                             | 76    |
| B.3       | Effects of faults                                                                                                | 77    |
| B.3.1     | Effects of single faults                                                                                         | 77    |
| B.3.2     | Independence of items                                                                                            | 79    |
| B.3.3     | Detection of single faults                                                                                       | 84    |
| B.3.4     | Action following detection (retention of safe state)                                                             | 87    |
| B.3.5     | Effects of multiple faults                                                                                       | 88    |
| B.3.6     | Defence against systematic faults                                                                                | 91    |
| Annex C ( | normative) Identification of hardware component failure modes                                                    | 92    |
| C.1       | General                                                                                                          | 92    |
| C.2       | General procedure                                                                                                | 92    |
| C.3       | Procedure for integrated circuits                                                                                | 92    |
| C.4       | Procedure for components with inherent physical properties                                                       | 93    |
| C.5       | General provisions concerning component failure modes                                                            | 93    |
| Annex D ( | informative) Example of THR/TFFR/FR apportionment and SIL allocation                                             | 111   |
|           | normative) Techniques and measures for the avoidance of systematic faults ontrol of random and systematic faults | 112   |
|           |                                                                                                                  |       |
| E.1       | General                                                                                                          |       |
| E.2       | Tables of techniques and measures                                                                                |       |
|           | informative) Guidance on User Programmable Integrated Circuits                                                   |       |
| F.1       | General                                                                                                          |       |
| F.1.1     | •                                                                                                                |       |
| F.1.2     |                                                                                                                  |       |
| F.2       | UPIC life cycle                                                                                                  |       |
| F.2.1     | -                                                                                                                |       |
| F.2.2     |                                                                                                                  |       |
| F.2.3     | •                                                                                                                |       |
| F.2.4     | 5                                                                                                                |       |
| F.2.5     | 5 1 5                                                                                                            |       |
| F.2.6     | 5                                                                                                                |       |
| F.2.7     | 5                                                                                                                |       |
| F.2.8     | UPIC Physical Implementation                                                                                     | . 128 |

– 4 – IEC 62425:2025 CMV © IEC 2025

| F.2.9         | UPIC Integration                                                       |     |
|---------------|------------------------------------------------------------------------|-----|
| F.2.10        | UPIC Validation                                                        |     |
| F.2.11        | Requirements for use of pre-existing logic components                  | 128 |
| F.3 De        | etailed technical requirements for UPIC                                | 128 |
| F.3.1         | Guidance on safety architecture                                        | 128 |
| F.3.2         | Protection against random faults – architectural principles            | 129 |
| F.3.3         | Protection against systematic faults – techniques and measures         |     |
| · ·           | ormative) Changes in this document compared to IEC 62425:2007          |     |
| Bibliography  |                                                                        | 141 |
| List of comm  | ents                                                                   | 143 |
|               |                                                                        |     |
| Figure 1 – So | cope of the main IEC and CENELEC railway application standards         | 11  |
| Figure 2 – St | ructure of IEC 62425                                                   | 24  |
| Figure 3 – Ex | cample of system life cycle                                            | 26  |
| Figure 4 – Ex | cample of design and validation portion of system life cycle           | 28  |
| Figure 5 – In | dependence of roles for different SILs and BI, phases 5 to 10          |     |
| Figure 6 – St | ructure of safety case                                                 | 43  |
| Figure 7 – St | ructure of technical safety report                                     | 45  |
| Figure 8 – Ex | camples of different usage of safety cases                             | 55  |
| Figure 9 – Ex | xamples of different safety acceptance processes                       | 58  |
| -             | Safety requirements and safety integrity                               |     |
| -             | The hourglass model                                                    |     |
|               | Definition of hazards with respect to the system boundary              |     |
| -             | Example of a hazard analysis process                                   |     |
|               | Common cause failures (CCF)                                            |     |
| -             | Treatment of CCF by FTA                                                |     |
| 0             | -                                                                      |     |
| •             | Relationship between SILs and techniques                               |     |
| -             | Detection and negation times                                           |     |
| •             | Control of single and multiple faults                                  |     |
| -             | Influences affecting the independence of items                         |     |
|               | Detection and negation of single faults – composite fail-safety        |     |
| -             | Detection and negation of single faults – reactive fail-safety         |     |
| Figure C.1 –  | Example of a 4-terminal resistor, using a hybrid thick layer technique | 95  |
| Figure D.1 –  | Example of THR/TFFR/FR breakdown and related SIL allocation            | 111 |
| Figure F.1 –  | UPIC architecture                                                      | 124 |
| Figure F.2 –  | UPIC development context                                               | 124 |
| Figure F.3 –  | Example of UPIC development life cycle                                 | 125 |
| Figure F.4 –  | Example of UPIC development life cycle with pre-existing components    |     |
| Figure F.5 –  | UPIC development techniques and measures                               | 130 |
|               |                                                                        |     |
|               | ample of SRAC template                                                 |     |
| Table 2 – Se  | ctions and contents of the technical safety report                     | 45  |
| Table A.1 –   | The SIL table                                                          | 73  |

| Table B.1 – Measures to detect faults in integrated circuits by means of periodic online     testing      | 89  |
|-----------------------------------------------------------------------------------------------------------|-----|
| Table C.1 – Resistors                                                                                     | 95  |
| Table C.2 – Capacitors                                                                                    | 96  |
| Table C.3 – Electromagnetic components                                                                    | 97  |
| Table C.4 – Diodes                                                                                        | 100 |
| Table C.5 – Transistors                                                                                   | 101 |
| Table C.6 – Controlled rectifiers                                                                         | 103 |
| Table C.7 – Surge suppressors                                                                             | 104 |
| Table C.8 – Opto-electronic components                                                                    | 105 |
| Table C.9 – Filters                                                                                       | 107 |
| Table C.10 – Interconnection assemblies                                                                   | 108 |
| Table C.11 – Fuses                                                                                        | 109 |
| Table C.12 – Switches and push/pull buttons                                                               | 109 |
| Table C.13 – Lamps                                                                                        | 109 |
| Table C.14 – Batteries                                                                                    | 110 |
| Table C.15 – Transducers and sensors (excluding those with internal electronic circuitry)                 | 110 |
| Table E.1 – Safety planning and quality assurance activities                                              | 115 |
| Table E.2 – Safety requirements specification                                                             | 116 |
| Table E.3 – Safety organization                                                                           | 116 |
| Table E.4 – Architecture of system, subsystem or equipment                                                | 117 |
| Table E.5 – Design features                                                                               | 118 |
| Table E.6 – Failure and hazard analysis methods                                                           | 119 |
| Table E.7 – Design and development of system, subsystem or equipment                                      | 120 |
| Table E.8 – Safety verification and validation of the system, subsystem or equipment                      | 121 |
| Table E.9 – Application, operation and maintenance                                                        | 122 |
| Table F.1 – Example of documentation generated during each phase                                          | 126 |
| Table F.2 – Simplified techniques and measures for protection against systematic                          |     |
|                                                                                                           |     |
| Table F.3 – Design and verification (including all activities before synthesis)                           |     |
| Table F.4 – Synthesis                                                                                     |     |
| Table F.5 – Placement, routing and layout generation                                                      |     |
| Table F.6 – Description of techniques for design                                                          |     |
| Table F.7 – Description of techniques for synthesis   Table F.7 – Description of techniques for synthesis |     |
| Table F.8 – Description of techniques for placement, routing and layout generation                        |     |
| Table G.1 – Clauses and subclauses – correspondence with IEC 62425:2007                                   |     |
| Table G.2 – Figures and tables – correspondence with IEC 62425:2007                                       | 140 |

#### INTERNATIONAL ELECTROTECHNICAL COMMISSION

## RAILWAY APPLICATIONS – COMMUNICATION, SIGNALLING AND PROCESSING SYSTEMS – SAFETY RELATED ELECTRONIC SYSTEMS FOR SIGNALLING

#### FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC shall not be held responsible for identifying any or all such patent rights.

# This commented version (CMV) of the official standard IEC 62425:2025 edition 2.0 provides the user with comments from IEC TC 9 experts to explain the reasons of the most relevant changes made to the previous IEC 62425:2007 edition 1.0.

Experts' comments are identified by a blue-background number. Mouse over a number to display a pop-up note with the comment.

This publication contains the CMV and the official standard. The full list of comments is available at the end of the CMV.

IEC 62425:2025 CMV © IEC 2025 - 7 -

IEC 62425 has been prepared by IEC technical committee 9: Electrical equipment and systems for railways. It is an International Standard.

EN 50129:2018 has served as a basis for the development of this document.

This second edition cancels and replaces the first edition published in 2007. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) a better alignment with the life cycle phases defined in IEC 62278-1 has been made;
- b) Clause 5 describes the requirements that apply to the development of safety-related electronic systems (until phase 9 of the life cycle);
- c) Clause 8 focuses on the requirements for safety acceptance and approval of safety-related electronic systems and subsequent phases;
- d) requirements and guidance have been added in Clause 6 on the following topics:
  - 1) reuse of pre-existing systems,
  - 2) safety-related tools,
  - 3) impact of cybersecurity threats on functional safety,
  - 4) specific application safety cases;
- e) requirements for the structure and content of the safety case are now defined in a dedicated Clause 7;
- f) Annex A has been updated for the specification and allocation of safety integrity requirements;
- g) the content of former Annex D has been merged with Annex B, and the content has been changed from informative to normative;
- h) the status of Annex E has been changed from informative to normative;
- i) an Annex F has been added as an informative annex on User Programmable Integrated Circuits.

A more detailed comparison of changes between IEC 62425:2007 and this document can be found in Annex G.  $\,$ 

The text of this International Standard is based on the following documents:

| Draft       | Report on voting |
|-------------|------------------|
| 9/3113/FDIS | 9/3141/RVD       |

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members\_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn, or
- revised.

#### INTRODUCTION

This International Standard defines requirements for the development and acceptance of safetyrelated electronic systems in the railway signalling field.

Safety-related electronic systems for signalling include hardware and software aspects. To develop complete safety-related systems, both aspects need to be taken into account throughout the whole life cycle of the system. The requirements for the overall safety-related electronic system and for its hardware aspects are defined in this document. Other requirements are defined in associated IEC and CENELEC standards. For safety-related systems which include software, additional conditions are defined in IEC 62279:2015.

NOTE 1 IEC 62279:2015 is derived from the European Standard EN 50128:2011.

Additional requirements for safety-related communication are defined in IEC 62280:2014.

This document is the common base for safety acceptance and approval of electronic systems for railway signalling applications. The aim of railway authorities and railway industry is to develop railway systems based on common standards. The safety authorities having jurisdiction can apply this document to the relevant matters they choose. On this basis, cross-acceptance of safety approvals for sub-systems and equipment can be applied by the different national safety authorities.

Cross-acceptance is applicable to generic approval, not to specific applications.

This document is concerned with the evidence to be presented for the acceptance of safetyrelated systems. However, it specifies not only those life cycle activities which need to be completed before the acceptance stage, but also the additional planned activities to be carried out afterwards. In this way, safety justification will cover the whole life cycle.

This document is concerned with what evidence is to be presented. Except where considered appropriate, it does not specify who carries out the necessary work. The necessary work can be carried out by different people, in different circumstances or organisational structures, provided that independence of roles is respected.

This document consists of Clauses 1 to 8, which form the main part, and Annexes A, B, C, D, E, F and G. The requirements defined in Clauses 5 to 8 and in Annexes A, B, C and E are normative, whilst Annexes D, F and G are informative.

This document is in line with, and contain references to IEC 62278-1: $-^{1}$  and IEC 62278-2: $-^{1}$ .

NOTE 2 IEC 62278-1:— and IEC 62278-2:— are derived from the European Standards EN 50126-1:2017 and EN 50126-2:2017 respectively.

This document is based on the system life cycle described in IEC 62278 series and is in line with the IEC 61508 series. IEC 62278, IEC 62279 and IEC 62425 comprise the railway sector equivalent of the IEC 61508 series so far as railway communication, signalling and processing systems are concerned. Given that compliance with these documents has been demonstrated, there are no requirements in this document for further evaluation of compliance with the IEC 61508 series.

<sup>&</sup>lt;sup>1</sup> Under preparation. Stage at the time of publication: IEC/FDIS 62278-1:2025 and IEC/FDIS 62278-2:2025.

## RAILWAY APPLICATIONS – COMMUNICATION, SIGNALLING AND PROCESSING SYSTEMS – SAFETY RELATED ELECTRONIC SYSTEMS FOR SIGNALLING

#### 1 Scope

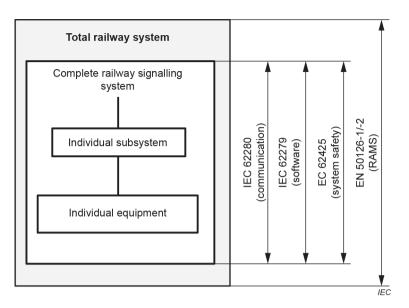
This document is applicable to safety-related electronic systems (including subsystems and equipment) for railway signalling applications.

This document applies to generic systems (i.e. generic products or systems defining a class of applications), as well as to systems for specific applications.

The scope of this document, and its relationship with other IEC and CENELEC standards, are shown in Figure 1.

This document is applicable only to the functional safety of systems. It does not deal with other aspects of safety such as the occupational health and safety of personnel. While functional safety of systems clearly can have an impact on the safety of personnel, there are other aspects of system design which can also affect occupational health and safety and which are not covered by this document. Cybersecurity aspects of functional safety are addressed only to a limited extent.

This document applies to all the phases of the life cycle of a safety-related electronic system, focusing in particular on phases 5 (architecture and apportionment of system requirements) to 10 (system acceptance) as defined in IEC 62278-1:—.


Requirements for systems which are not related to safety are outside the scope of this document.

This document is not applicable to existing systems, subsystems or equipment which had already been accepted prior to the development of this document. However, so far as reasonably practicable, it is applicable to modifications and extensions to existing systems, subsystems and equipment.

This document is primarily applicable to systems, subsystems or equipment which have been specifically designed and manufactured for railway signalling applications. It is also applicable, so far as reasonably practicable, to general-purpose or industrial equipment (e.g. power supplies, display screens or other commercial off the shelf items), which is procured for use as part of a safety-related electronic system.

This document is aimed at railway duty holders, railway suppliers, and assessors as well as at safety authorities, although it does not define an approval process to be applied by the safety authorities.

#### IEC 62425:2025 CMV © IEC 2025 - 11 -



#### Figure 1 – Scope of the main IEC and CENELEC railway application standards

#### 2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60664-1:2020, Insulation coordination for equipment within low-voltage supply systems – *Part 1: Principles, requirements and tests* 

IEC 62278-1:—<sup>2</sup>, Railway Applications – The Specification and Demonstration of Reliability, Availability, Maintainability and Safety (RAMS) – Part 1: Generic RAMS Process

IEC 62278-2:—<sup>2</sup>, Railway Applications – The Specification and Demonstration of Reliability, Availability, Maintainability and Safety (RAMS) – Part 2: Systems Approach to Safety

IEC 62279:2015, Railway applications – Communication, signalling and processing systems – Software for railway control and protection systems

IEC 62280:2014, Railway applications – Communication, signalling and processing systems – Safety related communication in transmission systems

IEC 62497-1<sup>3</sup>:2010, Railway applications – Insulation coordination – Part 1: Basic requirements – Clearances and creepage distances for all electrical and electronic equipment IEC 62497-1:2010/AMD1:2013

IEC 62498-1:2010, Railway applications – Environmental conditions for equipment – Part 1: Equipment on board rolling stock

IEC 62498-3:2010, Railway applications – Environmental conditions for equipment – Part 3: Equipment for signalling and telecommunications

<sup>&</sup>lt;sup>2</sup> Under preparation. Stage at the time of publication: IEC/FDIS 62278-1:2025 and IEC/FDIS 62278-2:2025.

<sup>&</sup>lt;sup>3</sup> There exists a consolidated edition 1.1:2013 that includes IEC 62497-1:2010 and its Amendment 1:2013.





Edition 2.0 2025-05

# INTERNATIONAL STANDARD

Railway applications – Communication, signalling and processing systems – Safety related electronic systems for signalling

# CONTENTS

| FC | DREWORD   |                                                        | 6  |
|----|-----------|--------------------------------------------------------|----|
| IN | TRODUCTI  | ON                                                     | 8  |
| 1  | Scope     |                                                        | 9  |
| 2  | Normativ  | e references                                           | 10 |
| 3  | Terms, d  | efinitions and abbreviated terms                       | 11 |
|    | 3.1 Ter   | ms and definitions                                     | 11 |
|    | 3.2 Abl   | breviated terms                                        | 21 |
| 4  | Overall f | ramework of this document                              | 22 |
| 5  | Requiren  | nents for developing safety-related electronic systems | 24 |
|    | 5.1 Ge    | neral                                                  | 24 |
|    | 5.2 The   | e quality management process                           | 24 |
|    | 5.3 The   | e safety management process                            | 26 |
|    | 5.3.1     | General                                                | 26 |
|    | 5.3.2     | Guideline for structuring documentation                | 26 |
|    | 5.3.3     | Safety life cycle                                      |    |
|    | 5.3.4     | Safety organization                                    | 27 |
|    | 5.3.5     | Safety plan                                            |    |
|    | 5.3.6     | Hazard log                                             | 30 |
|    | 5.3.7     | Safety requirements specification                      |    |
|    | 5.3.8     | System design for safety                               |    |
|    | 5.3.9     | Safety operation and maintenance plan                  |    |
|    | 5.3.10    | Safety verification                                    |    |
|    | 5.3.11    | Safety validation                                      |    |
|    | 5.3.12    | Safety qualification tests                             |    |
|    | 5.3.13    | Management of safety-related application conditions    |    |
|    | 5.3.14    | Safety justification                                   |    |
|    | 5.3.15    | Independent safety assessment                          |    |
| 6  |           | nents for elements following different life cycles     |    |
| -  | •         | neral                                                  |    |
|    |           | e of pre-existing items                                |    |
|    | 6.2.1     | General                                                |    |
|    | 6.2.2     | Requirements for use of complete pre-existing systems  |    |
|    | 6.2.3     | Requirements for use of pre-existing equipment         |    |
|    |           | fety-related tools for electronic systems              |    |
|    |           | vsical security and cybersecurity                      |    |
| 7  | -         | ty case: structure and content                         |    |
|    | 7.1 The   | e safety case structure                                | 41 |
|    |           | e technical safety report                              |    |
|    |           | neric and specific safety cases                        |    |
|    |           | ovisions for the specific application safety case      |    |
|    |           | pendencies between safety cases                        |    |
| 8  |           | safety acceptance and subsequent phases                |    |
| 5  | -         | stem safety acceptance process                         |    |
|    |           | eration, maintenance and performance monitoring        |    |
|    | •         | dification and retrofit                                |    |
|    |           | commissioning and disposal                             |    |
|    | 0.4 Dec   | commissioning and disposal                             | 50 |

| Annex A (norn  | native) Safety integrity levels                                                                             | 59  |
|----------------|-------------------------------------------------------------------------------------------------------------|-----|
| A.1 Gen        | eral                                                                                                        | 59  |
| A.2 Safe       | ety requirements                                                                                            | 59  |
| A.3 Safe       | ety integrity                                                                                               | 60  |
| A.4 Dete       | ermination of safety integrity requirements                                                                 | 60  |
| A.4.1          | General                                                                                                     |     |
| A.4.2          | Risk assessment                                                                                             |     |
| A.4.3          | Hazard control                                                                                              |     |
| A.4.4          | Identification and treatment of new hazards arising from design                                             |     |
|                | cation of SILs                                                                                              |     |
| A.5.1          | General aspects                                                                                             |     |
| A.5.2          | Relationship between SIL and associated TFFR                                                                |     |
| -              | native) Management of faults for safety-related functions                                                   |     |
|                | eral                                                                                                        |     |
|                | eral concepts                                                                                               |     |
| B.2.1          | Detection and negation times                                                                                |     |
| B.2.2          | Composition of two independent items                                                                        |     |
|                | cts of faults                                                                                               |     |
| B.3.1          | Effects of single faults                                                                                    |     |
| B.3.2          | Independence of items                                                                                       |     |
| B.3.3          | Detection of single faults                                                                                  |     |
| B.3.4          | Action following detection (retention of safe state)                                                        |     |
| B.3.5          | Effects of multiple faults                                                                                  |     |
| B.3.6          | Defence against systematic faults                                                                           |     |
| · ·            | native) Identification of hardware component failure modes                                                  |     |
| C.1 Gen        | eral                                                                                                        | 91  |
| C.2 Gen        | eral procedure                                                                                              | 91  |
| C.3 Proc       | cedure for integrated circuits                                                                              | 91  |
|                | cedure for components with inherent physical properties                                                     |     |
|                | eral provisions concerning component failure modes                                                          |     |
| Annex D (infor | mative) Example of THR/TFFR/FR apportionment and SIL allocation                                             | 110 |
|                | native) Techniques and measures for the avoidance of systematic faults<br>I of random and systematic faults | 112 |
| E.1 Gen        | eral                                                                                                        | 112 |
|                | les of techniques and measures                                                                              |     |
|                | mative) Guidance on User Programmable Integrated Circuits                                                   |     |
|                | eral                                                                                                        |     |
| F.1.1          | Purpose                                                                                                     |     |
| F.1.2          | Terminology and context                                                                                     |     |
| F.2 UPI        | C life cycle                                                                                                |     |
| F.2.1          | General                                                                                                     |     |
| F.2.2          | Organization, roles, responsibilities and personnel competencies                                            |     |
| F.2.3          | UPIC Requirements                                                                                           |     |
| F.2.4          | UPIC Architecture and Design                                                                                |     |
| F.2.5          | Logic Component Design                                                                                      |     |
| F.2.6          | Logic Component Coding                                                                                      |     |
|                |                                                                                                             |     |
| F.2.7          | Logic Component Verification                                                                                | 127 |

| F.2.9 UPIC Integration                                                              | 127 |
|-------------------------------------------------------------------------------------|-----|
| F.2.10 UPIC Validation                                                              |     |
| F.2.11 Requirements for use of pre-existing logic components                        |     |
| F.3 Detailed technical requirements for UPIC                                        |     |
| F.3.1 Guidance on safety architecture                                               |     |
| F.3.2 Protection against random faults – architectural principles                   |     |
| F.3.3 Protection against systematic faults – techniques and measures                |     |
| Annex G (informative) Changes in this document compared to IEC 62425:2007           |     |
| Bibliography                                                                        | 140 |
| Figure 1 – Scope of the main IEC and CENELEC railway application standards          |     |
| Figure 2 – Structure of IEC 62425                                                   |     |
| Figure 3 – Example of system life cycle                                             |     |
| Figure 4 – Example of design and validation portion of system life cycle            |     |
| Figure 5 – Independence of roles for different SILs and BI, phases 5 to 10          |     |
| Figure 6 – Structure of safety case                                                 |     |
| Figure 7 – Structure of technical safety report                                     |     |
| Figure 8 – Examples of different usage of safety cases                              |     |
| Figure 9 – Examples of different safety acceptance processes                        |     |
| Figure A.1 – Safety requirements and safety integrity                               |     |
| Figure A.2 – The hourglass model                                                    |     |
|                                                                                     |     |
| Figure A.3 – Definition of hazards with respect to the system boundary              |     |
| Figure A.4 – Example of a hazard analysis process                                   |     |
| Figure A.5 – Common cause failures (CCF)                                            |     |
| Figure A.6 – Treatment of CCF by FTA                                                |     |
| Figure A.7 – Relationship between SILs and techniques                               |     |
| Figure B.1 – Detection and negation times                                           | 74  |
| Figure B.2 – Control of single and multiple faults                                  |     |
| Figure B.3 – Influences affecting the independence of items                         | 80  |
| Figure B.4 – Detection and negation of single faults – composite fail-safety        |     |
| Figure B.5 – Detection and negation of single faults – reactive fail-safety         |     |
| Figure C.1 – Example of a 4-terminal resistor, using a hybrid thick layer technique |     |
| Figure D.1 – Example of THR/TFFR/FR breakdown and related SIL allocation            | 110 |
| Figure F.1 – UPIC architecture                                                      | 123 |
| Figure F.2 – UPIC development context                                               | 123 |
| Figure F.3 – Example of UPIC development life cycle                                 |     |
| Figure F.4 – Example of UPIC development life cycle with pre-existing components    |     |
| Figure F.5 – UPIC development techniques and measures                               |     |
|                                                                                     |     |
| Table 1 – Example of SRAC template                                                  |     |

| Table 1 – Example of SRAC template                                                                 | . 35 |
|----------------------------------------------------------------------------------------------------|------|
| Table 2 – Sections and contents of the technical safety report                                     | . 44 |
| Table A.1 – The SIL table                                                                          | . 72 |
| Table B.1 – Measures to detect faults in integrated circuits by means of periodic online   testing | . 88 |

| Table C.1 – Resistors                                                                                       | 94  |
|-------------------------------------------------------------------------------------------------------------|-----|
| Table C.2 – Capacitors                                                                                      | 95  |
| Table C.3 – Electromagnetic components                                                                      | 96  |
| Table C.4 – Diodes                                                                                          | 99  |
| Table C.5 – Transistors                                                                                     | 100 |
| Table C.6 – Controlled rectifiers                                                                           | 102 |
| Table C.7 – Surge suppressors                                                                               | 103 |
| Table C.8 – Opto-electronic components                                                                      | 104 |
| Table C.9 – Filters                                                                                         | 106 |
| Table C.10 – Interconnection assemblies                                                                     | 107 |
| Table C.11 – Fuses                                                                                          | 108 |
| Table C.12 – Switches and push/pull buttons                                                                 | 108 |
| Table C.13 – Lamps                                                                                          | 108 |
| Table C.14 – Batteries                                                                                      | 109 |
| Table C.15 – Transducers and sensors (excluding those with internal electronic                              |     |
| circuitry)                                                                                                  |     |
| Table E.1 – Safety planning and quality assurance activities                                                |     |
| Table E.2 – Safety requirements specification                                                               |     |
| Table E.3 – Safety organization                                                                             |     |
| Table E.4 – Architecture of system, subsystem or equipment                                                  |     |
| Table E.5 – Design features                                                                                 |     |
| Table E.6 – Failure and hazard analysis methods                                                             |     |
| Table E.7 – Design and development of system, subsystem or equipment                                        | 119 |
| Table E.8 – Safety verification and validation of the system, subsystem or equipment                        |     |
| Table E.9 – Application, operation and maintenance                                                          | 121 |
| Table F.1 – Example of documentation generated during each phase                                            | 125 |
| Table F.2 – Simplified techniques and measures for protection against systematic                            | 100 |
| failures                                                                                                    | 129 |
| Table F.3 – Design and verification (including all activities before synthesis)                             |     |
| Table F.4 – Synthesis                                                                                       |     |
| Table F.5 – Placement, routing and layout generation   Table F.5 – Placement, routing and layout generation |     |
| Table F.6 – Description of techniques for design                                                            |     |
| Table F.7 – Description of techniques for synthesis   Table F.2   Description of techniques for synthesis   |     |
| Table F.8 – Description of techniques for placement, routing and layout generation                          |     |
| Table G.1 – Clauses and subclauses – correspondence with IEC 62425:2007                                     |     |
| Table G.2 – Figures and tables – correspondence with IEC 62425:2007                                         | 139 |

#### INTERNATIONAL ELECTROTECHNICAL COMMISSION

## RAILWAY APPLICATIONS – COMMUNICATION, SIGNALLING AND PROCESSING SYSTEMS – SAFETY RELATED ELECTRONIC SYSTEMS FOR SIGNALLING

#### FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject deall with may participate in this preparatory work. International, governmental and non-governmental organizations for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 62425 has been prepared by IEC technical committee 9: Electrical equipment and systems for railways. It is an International Standard.

EN 50129:2018 has served as a basis for the development of this document.

This second edition cancels and replaces the first edition published in 2007. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) a better alignment with the life cycle phases defined in IEC 62278-1 has been made;
- b) Clause 5 describes the requirements that apply to the development of safety-related electronic systems (until phase 9 of the life cycle);

- 6 -

- c) Clause 8 focuses on the requirements for safety acceptance and approval of safety-related electronic systems and subsequent phases;
- d) requirements and guidance have been added in Clause 6 on the following topics:
  - 1) reuse of pre-existing systems,
  - 2) safety-related tools,
  - 3) impact of cybersecurity threats on functional safety,
  - 4) specific application safety cases;
- e) requirements for the structure and content of the safety case are now defined in a dedicated Clause 7;
- f) Annex A has been updated for the specification and allocation of safety integrity requirements;
- g) the content of former Annex D has been merged with Annex B, and the content has been changed from informative to normative;
- h) the status of Annex E has been changed from informative to normative;
- i) an Annex F has been added as an informative annex on User Programmable Integrated Circuits.

A more detailed comparison of changes between IEC 62425:2007 and this document can be found in Annex G.

The text of this International Standard is based on the following documents:

| Draft       | Report on voting |
|-------------|------------------|
| 9/3113/FDIS | 9/3141/RVD       |

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members\_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn, or
- revised.

IMPORTANT – The "colour inside" logo on the cover page of this document indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

### INTRODUCTION

This International Standard defines requirements for the development and acceptance of safetyrelated electronic systems in the railway signalling field.

Safety-related electronic systems for signalling include hardware and software aspects. To develop complete safety-related systems, both aspects need to be taken into account throughout the whole life cycle of the system. The requirements for the overall safety-related electronic system and for its hardware aspects are defined in this document. Other requirements are defined in associated IEC and CENELEC standards. For safety-related systems which include software, additional conditions are defined in IEC 62279:2015.

NOTE 1 IEC 62279:2015 is derived from the European Standard EN 50128:2011.

Additional requirements for safety-related communication are defined in IEC 62280:2014.

This document is the common base for safety acceptance and approval of electronic systems for railway signalling applications. The aim of railway authorities and railway industry is to develop railway systems based on common standards. The safety authorities having jurisdiction can apply this document to the relevant matters they choose. On this basis, cross-acceptance of safety approvals for sub-systems and equipment can be applied by the different national safety authorities.

Cross-acceptance is applicable to generic approval, not to specific applications.

This document is concerned with the evidence to be presented for the acceptance of safetyrelated systems. However, it specifies not only those life cycle activities which need to be completed before the acceptance stage, but also the additional planned activities to be carried out afterwards. In this way, safety justification will cover the whole life cycle.

This document is concerned with what evidence is to be presented. Except where considered appropriate, it does not specify who carries out the necessary work. The necessary work can be carried out by different people, in different circumstances or organisational structures, provided that independence of roles is respected.

This document consists of Clauses 1 to 8, which form the main part, and Annexes A, B, C, D, E, F and G. The requirements defined in Clauses 5 to 8 and in Annexes A, B, C and E are normative, whilst Annexes D, F and G are informative.

This document is in line with, and contain references to IEC 62278-1: $-^{1}$  and IEC 62278-2: $-^{1}$ .

NOTE 2 IEC 62278-1:— and IEC 62278-2:— are derived from the European Standards EN 50126-1:2017 and EN 50126-2:2017 respectively.

This document is based on the system life cycle described in IEC 62278 series and is in line with the IEC 61508 series. IEC 62278, IEC 62279 and IEC 62425 comprise the railway sector equivalent of the IEC 61508 series so far as railway communication, signalling and processing systems are concerned. Given that compliance with these documents has been demonstrated, there are no requirements in this document for further evaluation of compliance with the IEC 61508 series.

<sup>&</sup>lt;sup>1</sup> Under preparation. Stage at the time of publication: IEC/FDIS 62278-1:2025 and IEC/FDIS 62278-2:2025.

### RAILWAY APPLICATIONS – COMMUNICATION, SIGNALLING AND PROCESSING SYSTEMS – SAFETY RELATED ELECTRONIC SYSTEMS FOR SIGNALLING

#### 1 Scope

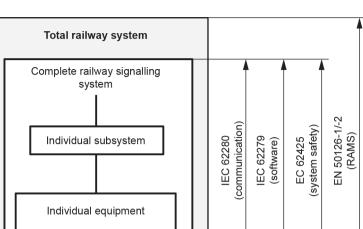
This document is applicable to safety-related electronic systems (including subsystems and equipment) for railway signalling applications.

This document applies to generic systems (i.e. generic products or systems defining a class of applications), as well as to systems for specific applications.

The scope of this document, and its relationship with other IEC and CENELEC standards, are shown in Figure 1.

This document is applicable only to the functional safety of systems. It does not deal with other aspects of safety such as the occupational health and safety of personnel. While functional safety of systems clearly can have an impact on the safety of personnel, there are other aspects of system design which can also affect occupational health and safety and which are not covered by this document. Cybersecurity aspects of functional safety are addressed only to a limited extent.

This document applies to all the phases of the life cycle of a safety-related electronic system, focusing in particular on phases 5 (architecture and apportionment of system requirements) to 10 (system acceptance) as defined in IEC 62278-1:—.


Requirements for systems which are not related to safety are outside the scope of this document.

This document is not applicable to existing systems, subsystems or equipment which had already been accepted prior to the development of this document. However, so far as reasonably practicable, it is applicable to modifications and extensions to existing systems, subsystems and equipment.

This document is primarily applicable to systems, subsystems or equipment which have been specifically designed and manufactured for railway signalling applications. It is also applicable, so far as reasonably practicable, to general-purpose or industrial equipment (e.g. power supplies, display screens or other commercial off the shelf items), which is procured for use as part of a safety-related electronic system.

This document is aimed at railway duty holders, railway suppliers, and assessors as well as at safety authorities, although it does not define an approval process to be applied by the safety authorities.

IEC





#### 2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60664-1:2020, Insulation coordination for equipment within low-voltage supply systems – *Part 1: Principles, requirements and tests* 

IEC 62278-1:—<sup>2</sup>, Railway Applications – The Specification and Demonstration of Reliability, Availability, Maintainability and Safety (RAMS) – Part 1: Generic RAMS Process

IEC 62278-2:—<sup>2</sup>, Railway Applications – The Specification and Demonstration of Reliability, Availability, Maintainability and Safety (RAMS) – Part 2: Systems Approach to Safety

IEC 62279:2015, Railway applications – Communication, signalling and processing systems – Software for railway control and protection systems

IEC 62280:2014, Railway applications – Communication, signalling and processing systems – Safety related communication in transmission systems

IEC 62497-1<sup>3</sup>:2010, Railway applications – Insulation coordination – Part 1: Basic requirements – Clearances and creepage distances for all electrical and electronic equipment IEC 62497-1:2010/AMD1:2013

IEC 62498-1:2010, Railway applications – Environmental conditions for equipment – Part 1: Equipment on board rolling stock

IEC 62498-3:2010, Railway applications – Environmental conditions for equipment – Part 3: Equipment for signalling and telecommunications

<sup>&</sup>lt;sup>2</sup> Under preparation. Stage at the time of publication: IEC/FDIS 62278-1:2025 and IEC/FDIS 62278-2:2025.

<sup>&</sup>lt;sup>3</sup> There exists a consolidated edition 1.1:2013 that includes IEC 62497-1:2010 and its Amendment 1:2013.